
Argonne National Laboratory is managed by  
The University of Chicago for the U. S. Department of Energy

 
 
 
Support Vector Machine  
Classifiers for Large Data Sets

ANL/MCS-TM-289

prepared by 
Mathematics and Computer Science Division 
Argonne National Laboratory



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government.  Neither the United States 

Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express 

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned rights.  Reference herein to any specific  

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply 

its endorsement, recommendation, or favoring by the United States Government or any agency thereof.  The views and opinions of 

document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, 

Argonne National Laboratory, or The University of Chicago. 

 

About Argonne National Laboratory 
Argonne is managed by The University of Chicago for the U.S. Department of Energy  
under contract W-31-109-Eng-38. The Laboratory’s main facility is outside Chicago,  
at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne  
and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report
This report is available, at no cost, at http://www.osti.gov/bridge. It is also available  
on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:

  U.S. Department of Energy

  Office of Scientific and Technical Information

  P.O. Box 62

  Oak Ridge, TN 37831-0062

  phone (865) 576-8401

  fax (865) 576-5728

  reports@adonis.osti.gov



Argonne National Laboratory is managed by  
The University of Chicago for the U. S. Department of Energy

 
 
 
Support Vector Machine  
Classifiers for Large Data Sets

ANL/MCS-TM-289

by
E.M. Gertz* and J.D. Griffin**
Mathematics and Computer Science Division, Argonne National Laboratory
Technical Memorandum ANL/MCS-TM-289

* Computer Sciences Department, University of Wisconsin, Madison, WI 53706.  E-mail: emgertz@mac.com.
** Givens Associate 2001, Mathematics and Computer Science Division, Argonne National Laboratory 
 Computational Sciences and Mathematical Research Division, Sandia National Laboratories,  
 Livermore, CA 94551-9217.  E-mail: jgriffi@sandia.gov.

October 2005

While the authors were affiliated with the Mathematics and Computer Science Division, this work was  
supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office 
of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.  
This work was also supported by National Science Foundation grants ACI-0082100 and DMS-0208449.



ii



Contents

Abstract 1

1 Introduction 1

2 Support Vector Machines 2

3 Interior-Point Methods 3

4 A Parallel Direct Solver 5

5 Preconditioned Krylov-Space Methods 6

5.1 The SVM Preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.2 Analysis of the SVM Preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.3 Termination Criteria for the PCG Method . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Numerical Results 12

7 Conclusions 15

Acknowledgments 15

References 15

iii



Support Vector Machine Classifiers
for Large Data Sets

by

E. Michael Gertz and Joshua D. Griffin

Abstract

This report concerns the generation of support vector machine classifiers for solving the pat-
tern recognition problem in machine learning. Several methods are proposed based on interior-
point methods for convex quadratic programming. Software implementations are developed by
adapting the object-oriented packaging OOQP to the problem structure and by using the soft-
ware package PETSc to perform time-intensive computations in a distributed setting. Linear
systems arising from classification problems with moderately large numbers of features are solved
by using two techniques—one a parallel direct solver, the other a Krylov-subspace method incor-
porating novel preconditioning strategies. Numerical results are provided, and computational
experience is discussed.

1 Introduction

Researchers have expressed considerable interest in the use of support vector machine (SVM) clas-
sifiers in pattern recognition problems (see Burges [5]; Cristianini and Shawe-Taylor [6]; and Vap-
nik [28].) The problem of generating an SVM classifier can be reduced to one of solving a highly
structured convex quadratic program. This quadratic program can be very large, and one must
exploit the structure of the problem to solve efficiently.

A number of methods for solving the SVM subproblem have been developed. Active-set methods,
such as those studied by Osuna et al. [20], Joachims [16], Platt [23, 22], and Keerthi et al. [26] are very
popular. Other methods have also been proposed, such as the Lagrangian methods of Mangasarian
and Musicant [18] and the semismooth methods of Ferris and Munson [8].

Recently, Ferris and Munson [7] have shown how to efficiently solve large problems, with millions
of observations, using a primal-dual interior-point algorithm and specialized linear algebra. They
vastly reduce the size of the linear systems to be solved by using the Sherman-Morrison-Woodbury
(SMW) formula (see [12]), which is equivalent to using the Schur complement arising in a block
row-reduction of the linear system. In this paper, we take a similar approach in formulating the
SVM problem. Our goal is to reduce the overall cost of generating an SVM classifier by reducing the
cost of applying the SMW formula, which is by far the most expensive operation in the algorithm.
We explore two techniques. The first exploits the natural parallelism of the SMW formula and
uses several processors to solve the problem. The second is based on the observation that the
SMW formula involves a positive-definite matrix with a natural preconditioner. This suggests the
application of a matrix-free Krylov-space iterative solver to the associated linear system.

In Section 2, we briefly review the theory of support vector machines. The use of interior-
point methods to generate SVM classifiers is considered in Section 3. In Section 4 we describe
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how classifiers may be generated efficiently in a parallel environment. The proposed matrix-free
iterative method is outlined in Section 5. Numerical experiments with an implementation using the
object-oriented QP solver OOQP [11, 10] and the parallel linear algebra library PETSc [1, 2, 3] are
described in Section 6.

2 Support Vector Machines

A learning machine finds a mapping, known as a classifier, between a population of objects and a
set of labels. For the pattern recognition problem, the labels are “yes” and “no,” which we represent
here as 1 and −1. A support vector machine is a specific type of learning machine for the pattern
recognition problem. The simplest SVM generates a linear classifier—an affine function x "→ wTx+β
that is used to define the classifier

x "→
{

1 if wTx + β ≥ 0;
−1 otherwise.

Classifiers are created by determining appropriate values of w and β by observing the features of a
training set, a subset of the population that has a known classification. Let n denote the number
of observations in the training set. Let m be the number of features in each observation vector xi,
and let di ∈ {−1, 1} indicate its classification. Let X denote the n × m matrix whose rows are
the observations xi; in other words, XT = (xi · · ·xn). Similarly, let D denote the n × n diagonal
matrix diag(d). Then, a linear SVM classifier may be created by finding w and β that solve the
minimization problem

minimize ‖w‖2
2 + τeTz

subject to D(Xw − βe) ≥ e − z
z ≥ 0,

(1)

where e is a vector of all ones, z is a vector of appropriate size, and τ is a positive constant that is
a parameter of the problem.

This formulation may be motivated by regarding eTz as a measure of the misclassification of the
training set by the generated classifier. The term τeTz is known as an #1 penalty function in the
theory of constrained optimization. A well-known property of the #1 penalty functions is that if
there are values of w and β that separate the training data correctly, then these values will be the
solution of the optimization problem for all sufficiently large τ (see, e.g., Fletcher [9]). It is easily
shown that the distance between the two hyperplanes xT

i w + β = 1 and xT
i w + β = −1 is given by

2/‖w‖2. Thus the objective in the optimization problem (1) can be seen as a balance between trying
to minimize the empirical misclassification error and trying to maximize the separation margin. (See
Vapnik [28] for a discussion of the composite objective and of why a larger separation margin may
improve the generalization capability of the classifier.)

The dual of the problem (1) is

minimize −eTv + vTDXXTDv
subject to eTDv = 0, 0 ≤ v ≤ τe.

(2)

For the primal-dual methods described in Section 4, there is little difference between the primal (1)
and dual (2) formulations. It is not hard to see that by making rw identically zero in (5) and
eliminating ∆w from the system, one may obtain a primal-dual iteration on the dual problem (2).
However, the constraints of the dual problem are mainly simple bounds, a fact that has been used
to great effect in a number of algorithms, notably the chunking algorithms introduced by Osuna et
al. [20].
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The dual formulation has also been used to generalize the classical linear problem (1). This gener-
alization involves replacing the product DXXTD in (2) by a matrix Q such that qij = diK(xi, xj)dj ,
where K is a given kernel function K : )n × )n "→ ). This yields a problem of the form

minimize −eTv + vTQv
subject to eTDv = 0, 0 ≤ v ≤ τe.

(3)

The n×n matrix Q is large and typically dense, making it inefficient to apply a primal-dual iteration
naively to (3). Under suitable conditions, however, the use of a kernel function is equivalent to
defining a transformation Φ(x) that maps the data into a larger, possibly infinite-dimensional feature
space and finding a separating hyperplane in this space (see Burges [5] or Cristianini and Shawe-
Taylor [6] for details). For some kernels, particularly polynomial kernels, the mapping Φ(x) is
not hard to define. Recently Smola and Schölkopf [25] show how to use an incomplete Cholesky
factorization to reduce the rank of Q, thereby implicitly providing an appropriate approximate Φ(x)
that may be used in a primal-dual method.

3 Interior-Point Methods

The problem (1) has a convex quadratic objective and only linear constraints. A general class
of methods that have proven effective in solving such a problem is interior-point methods. For a
discussion of such methods, see Wright [29]. We focus on implementations based on Mehrotra’s
predictor-corrector (MPC) method [19] and Mehrotra’s method with Gondzio’s second-order correc-
tors [13].

As a general rule, primal-dual interior point methods such as MPC operate by repeatedly solving
Newton-like systems based on perturbations of the optimality conditions of the problem. For the
SVM problem (1), these optimality conditions are

2w − Y Tv = rw = 0 (4a)
dTv = ρβ = 0 (4b)

τe − v − u = rz = 0 (4c)
Y w − βd + z − e − s = rs = 0 (4d)

ZUe = 0 (4e)
SV e = 0 (4f)

s, u, v, z ≥ 0, (4g)

where Y = DX and S, U , V , and Z are diagonal matrices whose diagonals are the elements of
the correspondingly named vector. In (4b) we use ρβ to denote the residual, rather than rβ , to
emphasize that this quantity is a scalar. The Newton system for the equations (4a)–(4f) is

2∆w − Y T∆v = −rw (5a)
dT∆v = −ρβ (5b)

−∆v −∆u = −rz (5c)
Y∆w − d∆β +∆z −∆s = −rs (5d)

Z∆u + U∆z = −ru (5e)
S∆v + V∆s = −rv, (5f)

where ru = Zu and rv = Sv. The MPC method solves systems with the same matrices, but for
which the residuals ru and rv have been perturbed from their values in the Newton system.
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The matrix of this system is large but sparse and highly structured. We use reductions similar to
those described in Ferris and Munson [7] to reduce the system to a smaller dense system that may
be efficiently solved by means of a Cholesky factorization. First, we eliminate the slack variables u
and s from the system. Combining (5c) with (5e), and (5d) with (5f), we obtain the system

−∆v + Z−1U∆z = −r̂z (6a)
Y∆w − d∆β +∆z + V −1S∆v = −r̂s, (6b)

where the residuals are defined to be r̂z = rz + Z−1ru and r̂s = rs + V −1rv. We may eliminate ∆z
from this system to obtain

Y∆w − d∆β +Ω∆v = −rΩ,

where we define
Ω = V −1S + U−1Z (7)

and rΩ = r̂s − U−1Zr̂z.

In matrix form, the remaining equations are



2I 0 −Y T

0 0 dT

Y −d Ω








∆w

∆β

∆v



 = −




rw

ρβ

rΩ



 .

Simple row eliminations yield the block-triangular system



2I + Y TΩ−1Y −Y TΩ−1d 0
−dTΩ−1Y dTΩ−1d 0

Y −d Ω








∆w

∆β

∆v



 = −




rw + Y TΩ−1rΩ

ρβ − dTΩ−1rΩ

rΩ



 .

A final row-reduction may be used to solve for ∆w and ∆β. Let us introduce the notation

r̂w = rw + Y TΩ−1rΩ (8a)
ρ̂β = ρβ − dTΩ−1rΩ (8b)
yd = Y TΩ−1d (8c)
σ = dTΩ−1d. (8d)

The scalar σ is nonzero because Ω is positive definite and d is nonzero. Then ∆w and ∆β may be
found from the reduced system

(2I + Y TΩ−1Y − 1
σ

ydy
T
d)∆w = −(r̂w +

1
σ
ρ̂βyd) (9a)

∆β =
1
σ

(−ρ̂β + yT
d∆w). (9b)

The value of ∆v may be obtained by the forward-substitution

∆v = −Ω−1(rΩ + Y∆w − d∆β). (10)

Equation (6a) may then be used to compute ∆z = −U−1Z(r̂z −∆v). The values of ∆u and ∆s may
be obtained through the relations ∆u = −Z−1(ru + U∆z), and ∆s = −V −1(rv + S∆v), which are
derived from (5e) and (5f), respectively.

Numerical experience has shown that the cost of solving this system is typically dominated by
the cost of forming the matrix

M = 2I + Y TΩ−1Y − 1
σ

ydy
T
d, (11)
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which is the coefficient matrix for (9a). In particular, O(nm2/2) multiplications are needed to
compute M explicitly. The next most significant operations, in terms of multiplications, are the
O(nm) multiplications needed to compute products with Y T and Y when computing the residuals
of the optimality conditions (4), in computing r̂w and yd in the row-reduction (8), and in computing
∆v through (10). If M is computed explicitly, it requires O(m3/6) multiplications to perform a
Cholesky factorization of M . If m is much smaller than n, as is typical in many applications, the
cost of this factorization is minor.

We propose two techniques to reduce the time required to formulate and solve (9a). The first,
described in Section 4, is to exploit the natural parallelism available in the formulation of M by
bringing more computing hardware to bear on the problem. The second, described in Section 5, is
to avoid the computation of M altogether and use an iterative method to solve (9a). This approach
is suggested by the positive definiteness of M (see Section 5 for a proof).

4 A Parallel Direct Solver

The operations of the MPC algorithm may be implemented efficiently in a multiprocessor environ-
ment. The primal-dual interior-point algorithm must solve several perturbed Newton-systems, and
all processors must perform calculations based on the computed steps. Thus, the algorithm has
inherent sequence points—points at which all processors must wait for the completion of certain
operations. However, the number of Newton-like systems that must be solved is typically modest,
while the cost of solving each system dominates the computational cost of the algorithm. As we
noted above, the most expensive operation is formulating and solving the system (9a). This system
can be solved efficiently in a parallel environment.

We rewrite (9a) as M∆w = b, where b = −(r̂w + ρ̂βyd/σ), and M is defined in (11) but repeated
here for convenience:

M = 2I + Y TΩ−1Y − 1
σ

ydy
T
d . (12)

The computation of the vector b is straightforward to implement in a multiprocessor environment.
Many of the operations require no communication because they involve multiplications by diagonal
matrices or their inverses. The operations that most impact parallel efficiency are the multiplications
by Y T needed for the computation of rw = 2w−Y Tv in (4) and r̂w = rw+Y TΩ−1rΩ and yd = Y TΩ−1d
in (8). However, the cost of these operations is insignificant compared to the cost of computing M .

Let # denote the number of processors. We partition Y and the diagonal matrix Ω as follows:

Y =





Y1

Y2

...
Y"




, Ω−1 =





Ω−1
1

Ω−1
2

. . .
Ω−1

"




, (13)

where Yi and Ωi are stored on processor i. With this notation

Y TΩ−1Y = Y T
1 Ω

−1
1 Y1 + Y T

2 Ω
−1
2 Y2 + · · · + Y T

" Ω
−1
" Y". (14)

The outer product Y T
i Ω

−1
i Yi may be computed entirely on processor i with local data. We may

use these products to compute M as follows. For i = 2, . . . , # let Mi = Y T
i Ω

−1
i Yi, with M1 =

2I + Y T
1 Ω

−1
1 Y1 − ydyT

d /σ. Then M may be represented by

M = M1 + M2 + · · · + M", (15)
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where Mi is stored entirely on processor i. The computation of M1 requires additional communica-
tion, namely, the distribution of the elements of yd to the first processor, but this cost is relatively
modest.

Once M is computed as a sum of matrices stored across processors, it must be used to solve
equation (9a). The approach we have taken is to explicitly compute M , reducing the sum (15) onto
a single processor, processor number one. We then perform a Cholesky factorization and solve the
system (9a) on this processor. The results are then distributed to the remaining processors. Our
motivation for taking this sequential approach is that M is a m × m matrix, where m is typically
relatively small. The Cholesky factorization may be implemented efficiently, and so performing this
operation sequentially is not costly and will likely outperform a parallel implementation for small
values of m. However, it may be advantageous to use a parallel Cholesky solver in a shared-memory
environment (see, e.g., Golub and Van Loan [12]).

The cost of computing the sum (15) is not insignificant, but is modest. Each Mi is symmetric,
and only m(m + 1)/2 elements of Mi are significant. The actual cost of the reduction depends on
the means of communication and the parallel library being used but may be as good as O(log #)
communications of m(m + 1)/2 elements.

Once ∆w has been computed, it is necessary to compute the values: ∆β, ∆s, ∆u, ∆v, ∆w, and
∆z. The scalar ∆β may be computed without communication using (9b) because yd and ∆w are
both available on processor one. The computation of ∆v is the only step that requires communication
because the multiplication by Y in (10).

5 Preconditioned Krylov-Space Methods

As discussed in Section (3), the cost of computing the matrix

M = 2I + Y TΩ−1Y − 1
σ

ydy
T
d (16)

tends to dominate the overall computing time. Recall that the matrix M , first introduced in equa-
tion (11), is the coefficient matrix of the linear system (9a). An alternative to computing M is
to apply a matrix-free iterative method to solving the system (9a). These iterative methods, also
known as Krylov-space methods, do not require that M be computed explicitly; they require only a
mechanism for computing matrix-vector products of the form Mx.

A total of O(2nm+n) multiplications are needed to compute the matrix-vector product Mx if the
computation is done in the straightforward manner. On the other hand, O(nm2/2) multiplications
are required to compute M explicitly. Thus, in order to gain any advantage from using an iterative
method, the system must be solved in fewer than m/4 iterations. For small values of m, there is
little hope that this will be the case, but if m is moderately large, then an iterative strategy can be
effective. However, the effectiveness and efficiency of an iterative method strongly depends on the
availability of an adequate preconditioner.

5.1 The SVM Preconditioner

The Krylov-space method that we use is the preconditioned linear conjugate-gradient (PCG) method.
We do not discuss the PCG method in detail, but rather refer the reader to Golub and Van Loan [12]
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and the references therein. A technique for defining a suitable preconditioner is to find a matrix
that in some sense approximates the matrix of the linear system to be solved, yet is inexpensive
to factor using a direct method. In this section we describe a suitable preconditioner for the linear
system (11). In Section 5.2, we investigate properties of this preconditioner that make it a good
choice for this system.

A predictor-corrector interior method solves two linear systems per iteration with the same
matrix but different right-hand sides. Thus, it might be supposed that a direct factorization of M
has some advantage over a Krylov-space method because the factorization need only be computed
once. To some degree, this supposition is true, but the apparent advantage of direct methods is
partially negated by three facts. First, the preconditioning matrix used by the iterative method need
be computed only once per iteration; thus the iterative method derives some benefit from solving
multiple systems with the same matrix. Second, it is not necessary to solve both the predictor
and corrector steps to the same accuracy. Third, the right-hand sides of the systems differ but are
related. Therefore the computed predictor step can be profitably used as an initial guess for the
combined predictor-corrector step.

The product Y TΩ−1Y may be written as the sum of outer products

Y TΩ−1Y =
1
ω1

y1y
T
1 + · · · + 1

ωn
ynyT

n . (17)

Recall from (7) that
ωi = si/vi + zi/ui.

The complementarity conditions (4e) and (4f) require that at the solution visi = 0 and uizi = 0
for all i ∈ 1, . . . , n. A common regularity assumption, known as strict complementarity, is that
vi + si > 0 and ui + zi > 0 at the solution. For any i for which strict complementarity holds, the
limit of ωi as the iterations progress is necessarily zero or infinity.

It follows that in the later iterations of a primal-dual algorithm, the terms in the sum (17) have
widely differing scales. A natural approximation to Y TΩ−1Y is obtained by either omitting terms
in the sum (17) that are small or by replacing these small terms by a matrix containing only their
diagonal elements. We have found that the strategy of retaining the diagonal elements is more
effective.

Let A be the set of indices for which the terms in the sum (17) are large in a sense that we
make precise below. An appropriate preconditioner for M , which we henceforth refer to as the SVM
preconditioner, is then

PA = 2I − 1
σ̃

ỹdỹ
T
d +

∑

i∈A

1
ωi

yiy
T
i +

∑

i#∈A
diag

( 1
ωi

yiy
T
i

)
, (18)

where ỹd =
∑

i∈A(di/ωi)yi and

σ̃ =
{ ∑

i∈A ω−1
i if A is nonempty;

1 otherwise.

If chosen wisely, the size of A may be significantly smaller than the number of observations, allowing
P to be formed at significantly less cost than it would take to form M .

The PCG method is well defined and convergent if both M and preconditioning matrix PA are
positive definite. As the following propositions show, this is always the case.
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Proposition 1 Let I be a nonempty subset of the integers from 1 to n. Let Ω̃ be the diagonal matrix
whose diagonal elements are ωi for i ∈ I. Let d̃ and Ỹ be defined similarly, with the d̃ defined to be
the vector whose elements are di for i ∈ I and Ỹ the matrix whose rows are yi for i ∈ I. Then the
matrix

Q = Ỹ TΩ̃−1Ỹ −
(
d̃TΩ̃−1d̃

)−1(
Ỹ TΩ̃−1d̃

)(
Ỹ TΩ̃−1d̃

)T

is positive semidefinite.

Proof. Because Ω̃−1 is positive definite, one may define the inner product

〈x, y〉ω = xTΩ̃−1y

and associated inner-product norm ‖x‖ω =
√
〈x, x〉ω . For a vector v,

vTQv = ‖Ỹ v‖2
ω − 〈Ỹ v, d̃〉2ω

‖d̃‖2
ω

.

But by the Cauchy-Schwarz inequality |〈Ỹ v, d̃〉ω| ≤ ‖Ỹ v‖ω‖d̃‖ω. It immediately follows that Q is
positive semidefinite. !

Proposition 2 For any index set A, the matrix PA defined by (18) is positive definite. Furthermore,
the matrix M of (12) is positive definite.

Proof. The preconditioner, PA, has the general form

PA = 2I +
∑

i#∈A
diag

(
1
ωi

yiy
T
i

)
+ Q.

If A is empty, then Q = 0. If A is nonempty, then Q satisfies the conditions of Proposition 1. In
either case Q is positive semidefinite. For any vector v, the product vvT is positive semidefinite
and therefore has nonnegative diagonal elements. Thus PA is the sum of 2I with several positive
semidefinite matrices. It follows that PA is positive definite.

If A contains all integers from 1 to n, then PA = M . Hence, it immediately follows that M is
positive definite. !

Next we develop a rule for choosing the set A at each iteration. Consider the quantity

µ = (vTs + uTz)/(2n),

and observe that by definition visi ≤ µ and uizi ≤ µ for all i = 1, . . . , n. For a typical convergent
primal-dual iteration, we have

visi ≥ ρµ and uizi ≥ ρµ (19)

for some positive value ρ that is constant for all iterations. Thus those wi that converge to zero
typically converge at a rate proportional to µ. Similarly, those wi that grow without bound typically
grow at a rate proportional to 1/µ.

Based on the observations above, we choose i ∈ A if and only if

1
ωi

yT
i yi ≥ γ min

(
1, µ1/2

)
, (20)
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where the value γ is a parameter of the algorithm. Eventually the test will exclude all ωi that are
converging to zero at a rate proportional to µ.

One does not know a priori the most effective value for the parameter γ for a particular problem,
although we have found that γ = 100 works well in practice. Sometimes, however, typically at an
early primal-dual iteration, the PCG method will converge slowly or will diverge because of numerical
error. In such cases, we use a heuristic to decrease the value of γ and include more indices in A. We
describe this heuristic in Section 5.3. We emphasize that γ never increases during the solution of a
particular SVM problem.

5.2 Analysis of the SVM Preconditioner

For any positive-definite A, the worst-case convergence rate of the conjugate-gradient method is
described by the inequality

‖x − xk‖ ≤ 2‖x − x0‖A

(√
κ− 1√
κ + 1

)k

, (21)

where κ = κ2(A) " ‖A‖2‖A−1‖2, is the condition-number of A and ‖v‖A "
√

vTAv for any vector
v. (For a derivation of this bound, see, e.g., Golub and Van Loan [12].)

For the PCG method with the SVM preconditioner, the relevant condition number is κ2(P−1
A M).

In this section, we show that the definition (18) of PA, together with the rule (20) for choosing
indices to include in A, implies that κ2(P−1

A M) converges to one as µ converges to zero. Thus, as
the optimization progresses, PA becomes an increasingly accurate preconditioner for M .

Note that both M and PA have the form 2I +G, where G denotes a positive-semidefinite matrix.
This motivates the following proposition.

Proposition 3 If A = 2I +G, where G is positive-semidefinite, then A is invertible, and ‖A−1‖2 ≤
1
2 .

Proof. For any vector v, it holds that

vTAv = 2vTv + vTGv ≥ 2‖v‖2
2.

The Cauchy-Schwartz inequality gives ‖v‖2‖Av‖2 ≥ vTAv, which implies that ‖Av‖2 ≥ 2‖v‖2. This
inequality establishes the nonsingularity of A because Av = 0 implies that v = 0.

If u is any vector such that ‖u‖2 = 1, then

1 = ‖AA−1u‖2 ≥ 2‖A−1u‖2.

But ‖A−1‖2 = max‖u‖2=1 ‖A−1u‖2, and so ‖A−1‖2 ≤ 1
2 . !

The preceding proposition yields a bound on κ2(P−1
A M).

Proposition 4 Let M and PA be defined as in (12) and (18), respectively. If N " M − PA, then

κ2(P−1
A M) ≤

(
1 +

1
2
‖N‖

)2
.
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Proof. Note that P−1
A M = P−1

A (PA + N) = I + P−1
A N. Therefore, from Proposition (3) it follows

that
‖P−1

A M‖2 ≤ 1 + ‖P−1
A ‖‖N‖ ≤ 1 +

1
2
‖N‖.

It follows from a similar argument that

‖(P−1
A M)−1‖2 = ‖M−1PA‖2 ≤ 1 +

1
2
‖N‖.

The result follows. !

The SVM preconditioner is specifically designed to bound N .

Proposition 5 Let PA be defined by (18), and let A be chosen by the rule (20) for some γ ≤ γ̂,
where the upper bound γ̂ is independent of the iteration number. Then there is a postive constant ξ
such that, for any positive choice of the variables v, s, u, and z, it holds that ‖M − PA‖2 ≤ ξµ1/2.

Proof. Consider the matrix difference

M − PA =
∑

i#∈A

(
1
ωi

yiy
T
i − diag

( 1
ωi

yiy
T
i

))
− 1

σ̃
ỹdỹ

T
d +

1
σ

ydy
T
d.

By rule (20), yT
i yi/ωi < γ̂µ1/2 for i -∈ A. But then ‖yiyT

i ‖2/ωi ≤ yT
i yi/ωi < γ̂µ1/2. Because yiyT

i is
a rank-one matrix, its two norm is equal to its Frobenius norm. Subtracting the diagonal elements
from a matrix can only decrease the Frobenius norm, and so for i -∈ A,

∥∥∥∥
1
ωi

yiy
T
i − diag

( 1
ωi

yiy
T
i

)∥∥∥∥
2

≤ γ̂µ1/2.

The identities yd =
∑

i=1...m(di/ωi)yi and yd−ỹd =
∑

i#∈A(di/ωi)yi imply that there are constants
c1, c2, and c3 depending only on the vectors {yi} such that

‖yd − ỹd‖2 ≤ c1γ̂µ1/2 (22)
‖yd − ỹd‖2 ≤ c2σ (23)

‖yd‖2 ≤ c3σ. (24)

If A is empty, then ỹd = 0 and ỹdỹT
d/σ̃ = 0. Therefore, if A is empty, it follows that

∥∥∥∥
1
σ̃

ỹdỹ
T
d − 1

σ
ydy

T
d

∥∥∥∥
2

≤ c1c3γ̂µ1/2.

Thus there is an ξ1 for which ‖M − PA‖2 ≤ ξ1µ1/2 whenever A is empty.

If A is nonempty, we define the necessarily nonnegative value Θ = (σ − σ̃)/σ̃. We may expand
the product

1
σ̃

ỹdỹ
T
d =

1
σ

(1 + Θ)
(
yd − (yd − ỹd)

)(
yd − (yd − ỹd)

)T
,

gather terms, and apply norm inequalities to determine that
∥∥∥∥

1
σ̃

ỹdỹ
T
d − 1

σ
ydy

T
d

∥∥∥∥
2

≤ Θ
σ
‖yd‖2

2 + 2
(1 + Θ

σ

)
‖yd − ỹd‖2‖y‖2

+
(1 + Θ

σ

)
‖yd − ỹd‖2

2. (25)
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We seek to establish an upper bound on Θ. When A is nonempty, then for whatever value of
γ ≤ γ̂ is chosen for that particular iteration, there is at least one i that satisifes rule (20). Hence,

σ̃ =
∑

i∈A
ω−1

i ≥ c4γ min
(
1, µ1/2

)

for a constant c4 that depends only on the data vectors {yi}. Similarly,

σ − σ̃ =
∑

i#∈A
ω−1

i ≤ c5γ(n − 1)min
(
1, µ1/2

)
,

for a constant c5 depending only on the data. It follows that whenever A is nonempty,

Θ =
σ − σ̃

σ

(
1 +

σ − σ̃

σ̃

)
≤ σ − σ̃

σ

(
1 + (n − 1)

c4

c5

)
. (26)

We emphasize that this bound is independent of the choice of γ so long as A is nonempty. Thus,
we may combine inequalites (22)–(26) to conclude that there is an ξ2 so that ‖M − PA‖2 ≤ ξ2µ1/2

whenever A is nonempty. The result follows by taking ξ to be the larger of ξ1 and ξ2. !

5.3 Termination Criteria for the PCG Method

The PCG method does not solve linear systems exactly, but only to some relative tolerance that is
typically much greater than machine precision. We have found it advantageous to solve the early
primal-dual systems to low accuracy and to increase the accuracy as iterations proceed.

Consider a single primal-dual iteration, and let Mx = bP denote the system (9a) with the right-
hand side associated with the predictor step. Similarly, let Mx = bC denote the system associated
with the corrector step. Let

rtol = min(10−1, 10−1µ).

The PCG algorithm is terminated when the predictor step, xP , satisifes the condition

‖bP − MxP ‖ ≤ max
(
rtol× ‖bP‖, 10−12

)
.

For the corrector step, xC , we tighten the tolerance and impose the condition

‖bC − MxC‖ ≤ max
(
10−2 × rtol× ‖bC‖, 10−12

)
.

We maintain a count of the cumulative number of PCG iterations used in solving both the predictor
and corrector equations. While solving either system, if the cumulative number of iterations exceeds

imax = max
(
m/8, 20

)
,

then the value of γ is decreased, thereby increasing the size of the active set. The preconditioner is
then updated before proceeding to the next PCG iteration.

The following rule is used to adjust the value of γ. For j ≥ 1, let

kj = min
(
|A| + jm/2, n

)
.

Then, if dj is the kth
j largest value of yT

i yi/ωi for i = 1, . . . , n, define

γj = (1 − 10−8)
dj

min
(
1, µ1/2

) ,
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and let Aj be the set of indices chosen if γ = γj in the rule (20). The intent of these definitions is to
ensure that the size of Aj is at least kj . For each j ≥ 1 in turn, we use the indices in Aj to form the
preconditioner, reset the cumulative iteration count to zero, and continue the PCG iteration for at
most imax additional iterations. Note that A ⊂ A1 and that Aj ⊂ Aj+1 for j ≥ 1. Therefore for each
j, the preconditioner may be updated rather than being recalculated. Because the preconditioner is
exact for sufficiently large j, there must be some γj for which both predictor and corrector systems
converge. We choose this final γj to be γ for subsequent iterations of the optimization.

6 Numerical Results

Both the preconditioned conjugate-gradient and the parallel direct methods were implemented
by using the object-oriented quadratic programming code OOQP. OOQP implements Mehrotra’s
predictor-corrector algorithm entirely in terms of an abstract representation of a convex quadratic
program. We implemented the solvers described in this paper by providing concrete implementations
of the necessary abstract routines and data structures, tailoring these implementations to handle
the SVM subproblem efficiently.

For the solver that uses the preconditioned conjugate gradient method to solve linear systems, we
use an algorithm, supplied by OOQP, that follows Mehrotra’s algorithm, with minimal modifications
necesary to handle quadratic, rather than linear, programs. For the parallel direct method, we
use an algorithm that has been further modified to use additional corrector steps, as described
by Gondzio [13]. The parallel direct solver can compute these additional corrector steps at little
additional cost. Both these algorithms are described further in Gertz and Wright [11].

OOQP also uses an abstract representation of core linear algebra objects such as vectors, matrices,
and linear solvers. We use the toolkit PETSc to provide implementations of these core objects and
operations. PETSc is designed for parallel computation, so it is a natural choice for implementing
the parallel direct solver. Moreover, PETSc implements a number of Krylov-space methods and in
particular provides the PCG method. It was therefore convenient to use PETSc to implement both
the SVM solvers described in this paper.

For all problems described below, we set

w = 0, β = 0, z = u = 2e, and s = v = 2e,

to form an intial starting point. The problems were solved by using the penalty parameter τ = 1.
The QP solvers in OOQP are said to converge when

µ = (vTs + uTz)/(2n) < 10−8 and ‖r‖∞ < 10−8,

where
r = (rw , ρβ , rz , rs)T ,

with rw, ρβ, rz , and rs defined in (4).

To test the effectiveness of the parallel direct method, we used Chiba City, a scalable cluster
at Argonne. Chiba City has 256 computing nodes, each consisting of a dual-CPU Pentium III 500
MHz system with 512 MB of RAM and 9 GB of local disk memory. For high-performance commu-
nication, 64-bit Myrnet is used. All computing nodes are connected via a switched fast internet.
Communication between processors is accomplished by using the MPICH [14, 15] implementation
of the standard Message Passing Interface (MPI) protocol.

12



Table 1 shows the performance of the parallel direct method for a varying number of processors on
the same randomly generated problem with 400 features and 32,000 observations. We used random
data in this case because the time to form and factor M depends only on the size of the data and
not on the data itself. Column 2 reports the elapsed time required to solve the problem. For up to
16 processors, these times demonstrate excellent parallel efficiency. Column 3 reports the number of
optimization iterations required to solve the problem, which is also the number of times M is formed
and factored. As desired, the number of iterations does not increase as the number of processors is
increased, evidence that the implementation is numerically stable.

Table 1: Numerical results for parallelized direct method on random data with 400 features and
32, 000 observations

Number of
Processors Time Iterations

2 14 min 52 sec 19
4 8 min 5 sec 19
8 3 min 52 sec 19
16 2 min 4 sec 19
32 2 min 58 sec 19

To test the iterative solver, we used five problems taken from a repository of machine learning
composed by Hettich, Blake, and Merz [24] at the University of California, Irvine:

Mushroom Database The mushroom database was provided by the Audobon Society Field Guide [24].
The database provides a list of mushrooms described in terms of physical characteristics and
categorized as either poisonous or edible. It contains 8,124 data points each having 22 at-
tributes.

Isolet Spoken Letter Recognition Database This database was created by Ron Cole and Mark
Fanty [24]. Data was generated from 150 subjects who spoke each letter of the alphabet twice.
Two data sets were provided, which we concatenated to create a single data set with 7,779
data points and 617 features.

Waveform Data Generator The waveform database arises from [4]. Several data sets are pro-
vided. We use the largest data set, waveform+noise, which contains 5,000 data points each
having 40 attributes.

Letter Recognition Database The letter recognition database was created by David J. Slate [24].
The objective is to identify 26 capital letters in the English alphabet from rectangular pixel
displays. The database consists of 20,000 data points each having 17 attributes.

Connect-4 Opening Database The connect-4 database “contains all legal 8-ply positions in the
game of connect-4 in which neither player has won yet and in which the next move is not
forced.” [24]. The set consists of 67,557 data points each having 42 categories.

The data points for all problems analyzed except isolet were projected to higher dimensions via
the mapping φ : Rm → Rmp , where mp =

(m+2
2

)
,

φ(x) =
(
φ1(x)T, φ2(x)T, φ3(x)T, 1

)T
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and

φ1(x) =
(
x2

1, x2
2, . . . , x2

m

)
,

φ2(x) =
√

2 (x1x2, . . . , x1xm, x2x3, . . . , x2xm, . . . , xm−1xm) ,

φ3(x) =
√

2 (x1, . . . , xm) .

This construction is equivalent to the use of the polynomial kernel

〈φ(x), φ(y)〉 = (〈x, y〉 + 1)2.

See [17, 21, 27] for a discussion of the use of polynomial kernels. The data for each problem was
then normalized to have values lying in [−1, 1], via the substitution

Xij ← Xij

maxij |Xij |
.

All problems were solved by using the penalty parameter τ = 1 and γ = 100 as the initial value
in (20).

The iterative solver was tested on one processor of a dual Xeon 3.6 GHz Intel processor CPU
with 8 GB of RAM. We compare the performance of two similar methods for solving each SVM
problem. The first method, which for the sake of brevity we call the iterative solver, uses the
MPC algorithm and solves each instance of the linear system (12) using the PCG method and the
SVM preconditioner. The other method, which we call the serial direct solver, also uses the MPC
algorithm but solves (12) using a direct solver. The serial direct solver was implemented by simply
setting γ = 0 in (20), which forces the preconditioner to be the matrix M itself and the PCG method
to converge in one iteration.

Table 2 shows the time and number of MPC iterations used by the serial direct solver to solve
each problem. We compare these data to the data of Table 3, which shows the time and number of
MPC iterations used by the iterative solver. In every case, the iterative solver used less time than
did the serial direct solver. Moreover, for every problem except mushroom, both solvers used the
same number of MPC iterations; for mushroom the iterative solver used 22 iterations and the serial
direct solver used 23. Thus for these problems, the lower relative accuracy of the PCG method
compared to a direct method did not adversely impact the optimization solver.

Table 2: Numerical results for serial direct method on data sets from [24]

Name Hyperplane
Dimension

Number of
Data Points

Time
(seconds) MPC Itns.

mushroom 276 8124 14.93 23
isolet 617 7797 178.9 25
waveform 861 5000 202.66 22
letter-recognition 153 20000 35.34 62
connect-4 946 67557 3825.36 26

The size of each problem is shown in Table 2. The second column of Table 3 shows the average
number of vectors used to form the SVM preconditioner. In every case, this number is significantly
smaller than the number of datapoints, which implies that on average it required fewer operations to
form the SVM preconditioner than it would have required to form M . As we discussed in Section 5,
one must be able to solve the linear system in fewer than m/4 iterations to derive any benefit from
using the PCG method. The fifth column of Table 3 lists the average number of PCG iterations
required for each MPC iteration. For this set of problems, the average number of PCG iterations is
always significantly smaller than m/4.
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Table 3: Numerical results for PCG method on data sets from [24]

Name Avg. |A| Time (sec.) MPC Itns. Avg. PCG Itns.
mushroom 250 5.96 22 15.95
isolet 165 19.11 25 18.20
waveform 196 25.21 22 33.86
letter-recognition 605 20.49 62 13.90
connect-4 26110 1092.62 26 34.19

7 Conclusions

We have described a primal-dual interior-point method for determining SVM classifiers with respect
to the binary classification problem. We have used both the MPC method and Mehrotra’s method
with Gondzio’s second order correctors [13] for solving the outlying QP problem (1). The most
time-consuming step in these optimization algorithms is obtaining a solution to (9a). Efficiently
determining an approximate solution to (9a) has been the primary focus of this paper.

Two methods were described and implemented, with numerical results included. The parallel
direct method appears to be robust and straightforward, yielding immediate and obvious gains.
However, there is a limiting point, dependent on the dimensions of the problem, where adding more
processors is no longer beneficial because of the increase in communication. The SVM iterative
method was superior to the serial direct solver for all problems tested.

The effectiveness of both the parallel direct solver and the serial iterative solver hints that
combining these approaches may lead to increased efficiency. In such an approach, PA would be
formed in parallel, as opposed M . In order to maximize the effectiveness of a parallel iterative
method, however, necessary precautions would need be taken to ensure a proper distribution of
data. Little would be gained from forming PA in parallel if all vectors corresponding to A were to
lie on a single processor. Robust and effective methods of balancing the cost of forming PA across
available processors are the subject of further research.
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